

Note

Synthesis of 6,7-dihydroxy-3-aryl-5-undecyl-4,1,2-benzoxadiazines

G Brahmeshwari

Department of Chemistry, University Arts and Science College,
Subedari, Kakatiya University, Warangal 506 001, India

E-mail: gbrahmeshwari@yahoo.co.in

Received 19 November 2008; accepted (revised) 18 June 2009

Condensation of Embelin **1** with different aromatic acid hydrazides **2** in glacial acetic acid to give N^1 -5-hydroxy-6-undecyl-*p*-benzoquinone-2-yl-benzhydrides **3**. Reductive cyclization of the product **3** with simultaneous acetylation *in situ* resulted in the formation of the compound **4** 1-N-acetyl-6,7-diacetyl-3-aryl-5-undecyl-4,1,2-benzoxadiazine. In the final step the compound **4** is deacetylated to give the title products **5**. The structures of the newly prepared compounds have been confirmed from analytical and spectral data. Some of the compounds exhibited antibacterial and antifungal activity.

Keywords: Embelin, acid hydrazides, acetylation, cyclization reaction, antibacterial, antifungal

Many substituted and fused 1,3,4-oxadiazines as monoamine oxidase inhibitors¹⁻⁵, 5,6-dihydro-4*H*-1,3,4-oxadiazines prepared from 2-(β -chloro-alkyl) carboxylic acid hydrazides have anticonvulsant activity³, DL-*trans* **4a**, 5,6,7,8,8a-hexahydro 3-phenyl-1*H*-4,1,2-benzoxadiazine and their N-benzoyl derivatives are monoamino oxidase, inhibitors and antivirus drugs⁶, tetrahydrooxadiazinones derived from ephedrine as monoamine oxidase inhibitors, antidepressants and anticonvulsants⁷, some 2-amino-5,6-dihydro-4*H*-1,3,4-oxadiazines as sedative, tranquilizers and analgesics⁸, 4-substituted 5,6-dihydro-2-*o*-hydroxy phenyl-4*H*-1,3,4-oxadiazin-5-ones as potential psychopharmacological drugs⁹ and derivatives of 1,3,4-oxadiazines for antiviral activity¹⁰.

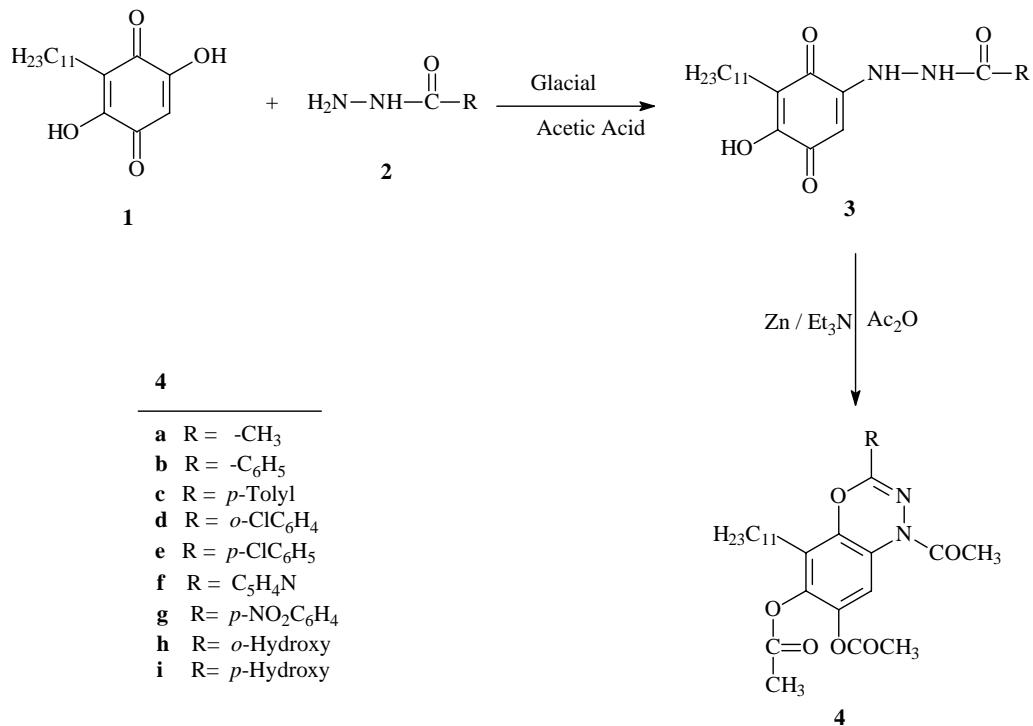
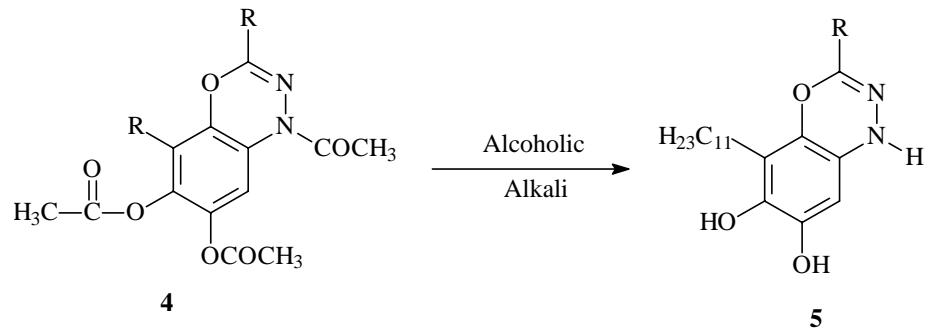
Thus, the chemistry of 1,3,4-oxadiazines is an evolving sphere and the compounds are of much value from the pharmacological activity point of view.

The title compounds 5-undecyl-4,1,2-benzoxadiazines are prepared in a three step reaction process starting from Embelin **1**.

Preparation of N^1 -5-hydroxy-6-undecyl-*p*-benzoquinone-2-yl-benzhydrides, **3** (Scheme I)

The intention is to build up oxadiazines fused to benzene ring of quinone skeleton. Hence, the product **3** has been chosen as the starting material. This undergoes reductive cyclization with simultaneous acetylation *in situ* which resulted in the formation of compound 1-N-acetyl-6,7-di-O-acetyl-3-aryl-5-undecyl-4,1,2-benzoxazine **4** in the presence of Ac_2O , zinc powder and triethyl amine (Et_3N) in catalytic amounts. The above compounds are deacetylated to get the desired product 6,7-dihydroxy-3-aryl-5-undecyl-4,1,2-benzoxadiazine **5** (Scheme II).

In the first stage, the more nucleophilic amino group of the acid hydrazide **2** attacks the carbonyl carbon of embelin **1** at C_2 . Later, dehydration and keto-enol tautomerism would bring about the formation of the product **3**. This is in accordance with the mechanism proposed by Kenneth H. Dudley¹¹ and Libermann^{12,13} in the reaction between hydroxy quinone with amino derivatives.



In the second stage during the cyclization the non-bonding electron pair of the hydroxyl oxygen (C_1) attacks the amide carbonyl carbon of the hydrazide leading to cyclization with aromatization followed by subsequent acetylation. The product **4** on deacetylation gives the product **5**.

The products **3**, **4**, **5** were crystallized from suitable solvents, and homogeneity was checked and confirmed by TLC. The proposed structures of newly synthesized compounds **3**, **4**, **5** are in agreement with their spectral (IR, 1H NMR, mass) data and elemental analysis (Table I, Table II and Table III).

Experimental Section

All melting points were recorded on Cintex melting point apparatus and are uncorrected. IR spectra were recorded in Nujol on IR spectrometer, 1H NMR spectra on a Varian Gemini 200 MHz spectrometer using TMS as internal standard (chemical shifts in δ , ppm) and mass spectra on a Jeol-JMS-D mass spectrometer at 70 eV.

The various substituted 6,7-dihydroxy-3-aryl-5-undecyl-4,1,2-benzoxadiazines have been prepared. Representative methods of preparation of compounds

Scheme I**5**

a R = -CH₃
b R = -C₆H₅
c R = *p*-Tolyl
d R = *o*-ClC₆H₄
e R = *p*-ClC₆H₅
f R = C₅H₄N
g R = *p*-NO₂C₆H₄
h R = *o*-OHC₆H₄
i R = *p*-OHC₆H₄

Scheme II

Table I — Physical characterization data of compounds **3a-i**

Compd	R	Yield (%)	Mol. Formula (Mol. wt.)	m.p. °C	Found % (Calcd)		
					C	H	N
3a	CH ₃	60	C ₁₉ H ₃₀ N ₂ O ₄ (350)	152	65.14 (65.12)	8.57 8.52	8.06 8.00)
3b	C ₆ H ₅	72	C ₂₄ H ₃₂ N ₂ O ₄ (412)	189	69.90 (69.89)	7.76 7.70	6.79 6.72)
3c	<i>p</i> -Tolyl	60	C ₂₅ H ₃₄ N ₂ O ₄ (426)	133	70.42 (70.38)	7.98 7.97	6.57 6.54)
3d	<i>o</i> -ClC ₆ H ₄	68	C ₂₄ H ₃₁ N ₂ O ₄ Cl (446.5)	165	64.50 (64.49)	6.94 6.92	6.27 6.25)
3e	<i>p</i> -ClC ₆ H ₄	72	C ₂₄ H ₃₁ N ₂ O ₄ Cl (446.5)	119	64.50 (64.49)	6.94 6.90	6.27 6.21)
3f	C ₅ H ₄ N	62	C ₂₃ H ₃₁ N ₃ O ₄ (413)	155	66.82 (66.79)	7.50 7.48	10.16 10.12)
3g	<i>p</i> -NO ₂ C ₆ H ₄	60	C ₂₄ H ₃₁ N ₃ O ₆ (457)	180	63.01 (63.00)	6.78 6.72	9.19 9.18)
3h	<i>o</i> -OHC ₆ H ₄	81	C ₂₄ H ₃₂ N ₂ O ₅ (428)	135	67.28 (67.20)	7.47 7.41	6.54 6.51)
3i	<i>p</i> -OHC ₆ H ₄	75	C ₂₄ H ₃₂ N ₂ O ₅ (428)	133	67.28 (67.24)	7.47 7.43	6.54 6.53)

Table II — Physical characterization data of compounds **4a-i**

Compd	R	Yield (%)	Mol. Formula (Mol. wt.)	m.p. °C	Found % (Calcd)		
					C	H	N
4a	CH ₃	86	C ₂₅ H ₃₆ N ₂ O ₆ (460)	110	64.28 (64.24)	8.03 8.00	6.25 6.21)
4b	C ₆ H ₅	65	C ₃₀ H ₃₈ N ₂ O ₆ (522)	103	68.96 (68.94)	7.27 7.26	5.36 5.32)
4c	<i>p</i> -Tolyl	68	C ₃₁ H ₄₀ N ₂ O ₆ (536)	103	69.40 (69.40)	7.42 7.40	5.22 5.21)
4d	<i>o</i> -ClC ₆ H ₄	87	C ₃₀ H ₃₇ N ₂ O ₆ Cl (466.5)	101	69.09 (69.04)	19.26 19.24	5.37 5.35)
4e	<i>p</i> -ClC ₆ H ₄	74	C ₃₀ H ₃₇ N ₂ O ₆ Cl (466.5)	106	69.09 (69.02)	19.26 19.22	5.37 5.35)
4f	C ₅ H ₄ N	80	C ₂₉ H ₃₂ N ₃ O ₆ (511)	133	66.53 (66.49)	7.07 7.01	8.03 8.00)
4g	<i>p</i> -NO ₂ C ₆ H ₄	75	C ₃₀ H ₃₇ N ₃ O ₈ (567)	111	63.49 (63.42)	6.52 6.49	7.40 7.32)
4h	<i>o</i> -OHC ₆ H ₄	75	C ₃₀ H ₃₈ N ₂ O ₇ (433)	106	66.91 (66.89)	7.06 7.00	5.20 5.19)
4i	<i>p</i> -OHC ₆ H ₄	72	C ₃₀ H ₃₈ N ₂ O ₇ (433)	102	66.91 (66.89)	7.06 7.00	5.20 5.18)

3, 4 and **5** along with their spectral data are described below.

Preparation of N¹-(5-hydroxy-6-undecyl-*p*-benzoquinone-2-yl)-benzohydrazide, **3**

A mixture of Embelin (0.01 mole) and acid hydrazide (0.01 mole) were dissolved in absolute alcohol

(20 mL) and refluxed on a water-bath for 3 hr. The solid separated was filtered. The mother liquor was poured over crushed ice. The separated reddish brown solid was filtered, dried and purified by recrystallization from ethanol.

Spectral data of N¹-5-hydroxy-6-undecyl-*p*-benzoquinone-2-yl)-benzohydrazide: IR (Nujol): 3320

Table III — Physical characterization data of compounds **5a-i**

Compd	R	Yield (%)	Mol. Formula (Mol. wt.)	m.p. °C	Found % (Calcd)		
					C	H	N
5a	CH ₃	72	C ₁₉ H ₃₀ N ₂ O ₃ (334)	175	68.26 (68.16)	8.92 8.91	8.38 8.29)
5b	C ₆ H ₅	85	C ₂₄ H ₃₂ N ₂ O ₃ (396)	169	72.72 (72.68)	8.08 8.04	7.07 7.00)
5c	<i>p</i> -Tolyl	82	C ₂₄ H ₃₄ N ₂ O ₃ (398)	139	72.36 (72.30)	8.54 8.52	7.03 7.00)
5d	<i>o</i> -ClC ₆ H ₄	68	C ₂₄ H ₃₁ N ₂ O ₃ Cl (430.5)	95	66.89 (66.82)	7.20 7.10	6.50 6.48)
5e	<i>p</i> -ClC ₆ H ₄	70	C ₂₄ H ₃₇ N ₂ O ₃ Cl (430.5)	140	66.89 (66.84)	7.20 7.18	6.50 6.47)
5f	C ₅ H ₄ N	69	C ₂₃ H ₃₁ N ₃ O ₃ (383)	183	72.06 (72.00)	8.09 8.06	7.30 7.29)
5g	<i>p</i> -NO ₂ C ₆ H ₄	66	C ₂₄ H ₃₁ N ₃ O ₅ (441)	203	65.31 (65.21)	7.02 7.01	6.34 6.28)
5h	<i>o</i> -OHC ₆ H ₄	80	C ₂₄ H ₃₂ N ₂ O ₄ (412)	159	69.90 (69.87)	7.76 7.71	6.79 6.77)
5i	<i>p</i> -OHC ₆ H ₄	77	C ₂₄ H ₃₂ N ₂ O ₄ (412)	129	69.90 (69.41)	7.76 7.72	6.79 6.72)

(-N-H), 3200 (-OH), 1670 (-C=O), 1480-1580 (aromatic, C-H), 1370-1390 (benzylic protons of the undecyl side chain), 1320-1330 (-CH₃- side chain), 1040-1120 (aromatic C-H), 900 (vinylic H), 760 cm⁻¹ (*p*-C₆H₅); ¹H NMR (CDCl₃): δ 0.90 (3H of CH₃ of C₁₁), 1.25 (18H), 2.6 (Benzylid-2H), 6.1 (vinylic-H), 7.55 (aromatic, 5H), 7.9 (-NH), 8.00 (-NHCO).

1N-Acetyl-6,7-diacetyl-3-aryl-5-undecyl-4,1,2-benzoxadiazines, 4

N¹-(5-Hydroxy-6-undecyl-*p*-benzoquinone-2-yl)-benzhydrazide (0.01 mole) was dissolved in acetic anhydride (15 mL) and to it zinc powder and triethylamine in catalytical amounts were added and refluxed for 6 hr on a water-bath. The reaction-mixture was cooled to RT and poured over crushed ice and left overnight. The separated solid was filtered, dried and purified by recrystallization from suitable solvents.

Spectral data of 4

IR (Nujol): 1680 (-CO-NH₂), 1760 cm⁻¹ (-CO-CH₃); ¹H NMR (CDCl₃): δ 0.8 (t, 3H, end methyl), 1.20 (m, 18H, middle chain), 1.8 (t, 2H, allylic -CH₂), 2.2 (s, 3H, -N-COCH₃), 2.3 (s, 6H, 2OAc) and 7.00 - 7.25 (m, 6H, aromatic).

6,7-Dihydroxy-3-aryl-5-undecyl-4,1,2-benzoxadiazines, 5

Compounds **3** (0.01 mole) was treated with 0.05% alcoholic solution (10 mL) and was refluxed on a

steam-bath for 30 min. The reaction mixture was cooled to 0°C and neutralized with chilled 1% hydrochloric acid adjusting the pH to 7.0. The solid which separated out was filtered and purified by recrystallization from ethanol.

Spectral data of 5

IR (Nujol): 3200 (-NH), 3400 - 3600 cm⁻¹ (-OH); ¹H NMR (CDCl₃): δ 0.8 (t, 3H, end methyl), 1.20 (m, 18H, middle chain), 1.8 (t, 2H, allylic CH₂), 5.4 (br, s, -NH-) and 7.1-7.4 (m, 6H, 5Ar-H and 1H of fused oxadiazine system).

Biological evaluation

Antifungal activity

The results of antifungal tests show that all the substituted N-acetyl-2-aryl-6,7-diacetoxy-8-undecyl benzoxadiazines, have maximum germination inhibition even at low concentration (120 µg/mL) for both the fungi *i.e.*, *Curvularia lunata* and *Fusarium oxysporum* when compared to other compounds, the aryl, methyl substituted benzoxadiazines have maximum inhibition.

Antibacterial activity

The 4-substituted oxadiazines are tested against four bacterial organisms. They are *Bacillus subtilis*, *Bacillus polymyxa*, *Escherichia coli* and *Proteus vulgaris*. The aryl substituted benzoxadiazines have activity against all the bacteria.

Acknowledgement

The author is thankful to Dr. V. Rajeshwar Rao, National Institute of Technology Warangal for his fruitful guidance.

References

- 1 Trepanier D L, *US Pat* 3, 119, 921; *Chem Abstr*, 60, **1964**, 12033.
- 2 Trepanier D L, *US Pat*, 3, 133, 537; *Chem Abstr*, 60, **1964**, 12033.
- 3 Trepanier D L, Eble J N & Sprancmanis V, *J Med Chem*, 9, **1966**, 753.
- 4 Trepanier D L, *J Heterocycl Chem*, 2, **1965**, 403.
- 5 Trepanier D L, Eble J N & Harris G H, *J Med Chem*, 11, **1968**, 157.
- 6 Sankyo Co Ltd., *JP*, 6346 (67), **1964**; *Chem Abstr*, 69, **1968**, 21947.
- 7 Trepanier D L & Harris G H, *US Pat*, 3, 377, 345; *Chem Abstr*, 69, **1968**, 59293.
- 8 Trepanier D L, *US Pat*, 3, 432, 497; *Chem Abstr*, 70, **1969**, 115189.
- 9 Sicardi S, Lamdan S & Gaozza C H, *J Pharm Sci*, 63(8), **1974**, 1336.
- 10 Groriev G & Dryanovska N L, *Farmatriya (Sofia)*, 33(3), **1983**, 1.
- 11 Dudley K H, Wayno M H, Schenider P W & Mc Kee R L, *J Org Chem*, 34(9), **1969**, 2750.
- 12 Libermann C, *Chem Ber*, 14, **1881**, 1664.
- 13 Libermann C & Jacobson P, *Ann Chem*, 211, **1881**, 82.